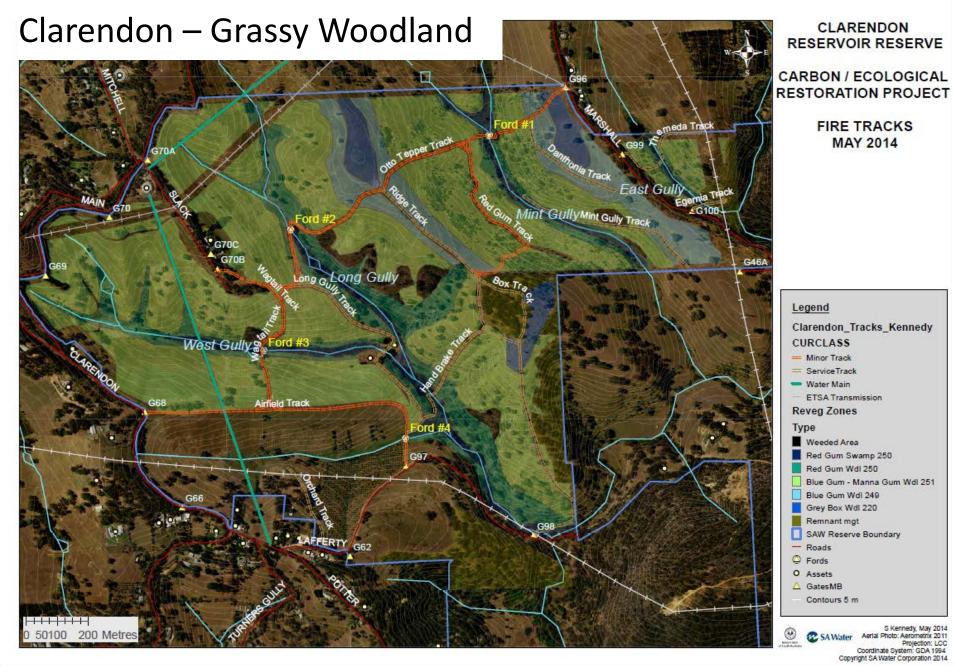
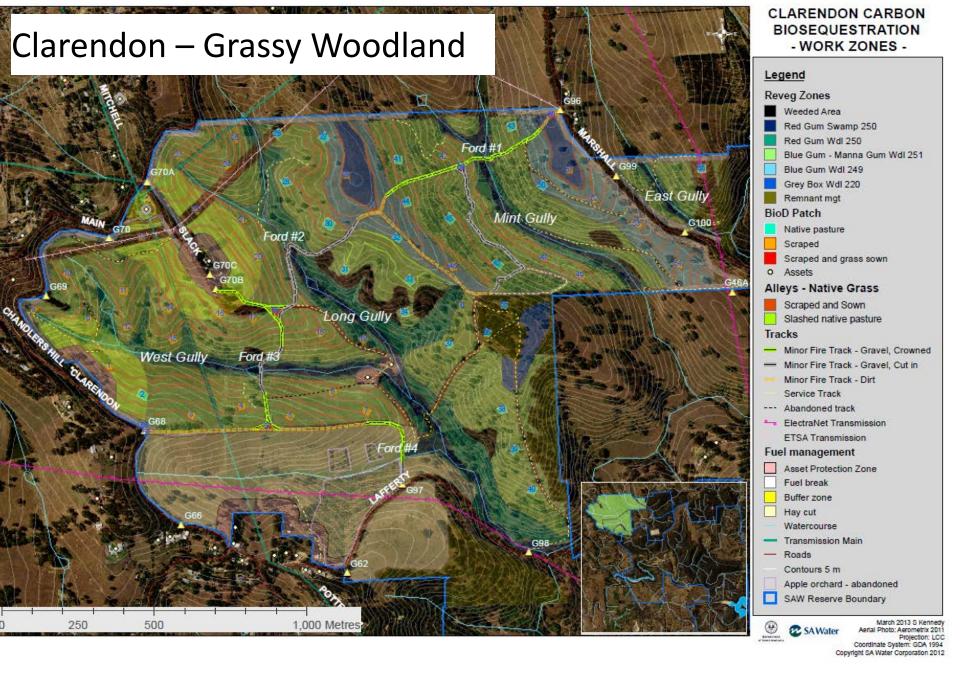
Native Grasses Forum 2016

Native Grasses \sim for \sim **Restoration Hipsters**


A tailored approach considering...

- Nutrients
- Weed seed bank
- Plant species diversity


Outline

- Case study snap shots
- A word on Planning restoration work
- Project design considerations
 - Nutrients
 - Weed seed bank
 - Species diversity
- Application to project case studies outcomes

S Kennedy, May 2014

Projection: LCC

Clarendon – Native Grass Alleys

Clarendon Nov 2015 – John Stafford harvest

Noarlunga Downs Wetland

Noarlunga Downs Wetland – Mallee-box Wdl

Noarlunga Downs Wetland – erosion control

Noarlunga Downs Wetland – Interp trail

Noarlunga Downs Wetland – interp trail

Noarlunga Downs Wetland – interp trail

Murray Bridge East – Abandoned waste water lagoon (350 mm rainfall)

August 2015 – planting mounds

January 2016

Hahndorf SPS – post construction reinstatement Oct 2012

Hahndorf SPS – post construction reinstatement Feb 2014

Hahndorf SPS – post construction reinstatement June 2014

Hahndorf SPS – post construction reinstatement Jan 2015

Outline

- Case study snap shots
- A word on Planning restoration work
- Project design considerations
 - Nutrients
 - Weed seed bank
 - Species diversity
- Application to project case studies outcomes

Habitat Restoration Planning Guide for Natural Resource Managers

Department of Environment and Natural Resources

ww.environment.sa.gov.au

Contents

Introduction 2
How to use this Guide 4
The Restoration Process
Overview
Summary of the restoration process
Setting Restoration Goals7
What is a restoration goal?
Targets of restoration
Timeframes for restoration goals
Summary
Further information
Identifying the Restoration Goal State11
How habitats have been damaged11
Desired qualities of the goal state
Habilat adequacy12
Habitat inventory 12
Habitat composition and structure
Functional roles and groups 14
Habitat connectivity and patch size
Resilient habitat
Climate change considerations
Predicted impacts of climate change
Maximise adaptive potential
Reference sites and goal states
Summary
Further information
Site Assessment
Aims
Soils and landforms
Infrastructure
Habitat attributes
Landscape context
Threats
Regeneration potential
Investigating the soil seed bank
Historical influences
Site assessment methods
Qualitative vs. quantitative data collection
Mapping
Summary
Further Information 32

SO RESTORATION RALASIA

Home

About SERA

The SERA Board and Executive Committee

Conferences

Industry Communication

Affiliates and NGOs

Early Career and Students

International development

Carbon and Ecological Restoration

Resources and Primer

Case Studies

National Standards

Membership

Contact us

NATIONAL STANDARDS FOR ECOLOGICAL RESTORATION

Click here to read the media release of 18 July 2016.

National Standards for the Practice of **Ecological Restoration** in Australia

Prepared by SERA Standards **Reference Group** and 12 Partner NGOs March 2016

SERA announced the launch of the National Standards for Ecological Restoration on 15 March 2016 at the National Seed Science Forum, Mt Annan Botanic Gardens, Sydney. Any enquiries may be emailed to tein.mcdonald@seraustralasia.com

The Standards have been designed to encourage all restoration and rehabilitation projects in Australia to reach their highest potential.

Indigenous Flora and Fauna Association

Australian Institute of Landscape Architects 1966/2016

Australian Network for Plant Conservation Inc.

for

Nature

Trees For Life

SERA's National Standards for Ecological Restoration

"The Standards identifies the principles underpinning restoration philosophies and methods, and outlines the steps required to plan, implement, monitor and evaluate a restoration project to increase the likelihood of its <u>success</u>."

SERA's Key Principles of Ecological Restoration Practice

- 1. Ecological restoration practice is based on an appropriate local indigenous <u>reference ecosystem</u>
- 2. <u>Restoration inputs</u> will be dictated by level of resilience and degradation
- 3. Recovery of ecosystem attributes is facilitated by identifying clear <u>targets, goals and objectives</u>
- 4. <u>Full recovery is the goal of ecological restoration but outcomes may</u> take long timeframes
- 5. Restoration <u>science and practice are synergistic</u>
- 6. <u>Social aspects are critical</u> to successful ecological restoration

25/10/2016

Ecosystem Amazeballs

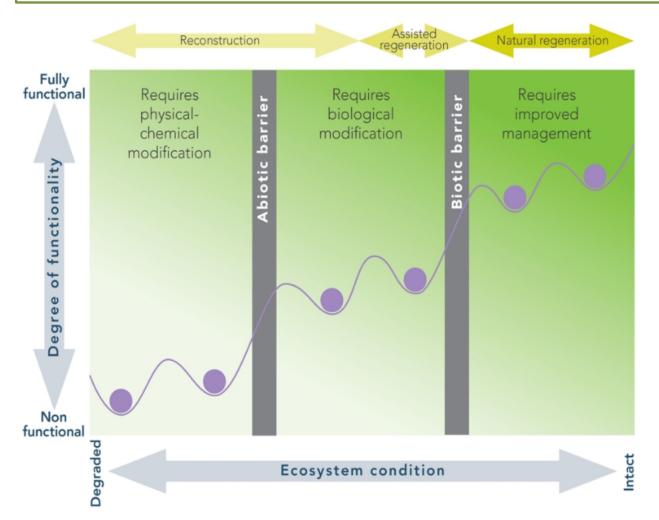
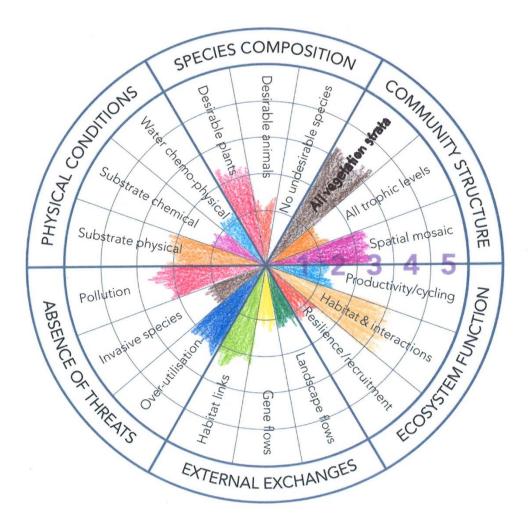



Figure 1. Conceptual model of ecosystem degradation and restoration. (Adapted from Keenleyside et al 2012, after Whisenant 1999, and Hobbs & Harris 2001). The troughs in the diagram represent basins of stability in which an ecosystem can remain in a steady state prior to being shifted by a restoration or a degradation event past a threshold (represented by peaks in the diagram) towards a higher functioning state or a lower functioning state.

[Note: Not all sites in need of physical/chemical amendment depend upon reintroduction for the return of biota - e.g. if colonisation potential in that ecosystem is high.]

25/10/2016

SERA's Recovery Wheel

SERA's 5 star evaluation system

ATTRIBUTE	1 STAR	2 STARS	3 STARS	4 STARS	5 STARS
Absence of threats	Further deterioration discontinued and site has tenure and management secured.	Threats from adjacent areas beginning to be managed or mitigated.	All adjacent threats being managed or mitigated.	Larger scale threats starting to be managed or mitigated.	All threats managed or mitigated to high extent.
Physical conditions	Gross physical and chemical problems remediated (e.g pollution, erosion, compaction).	Substrate chemical and physical properties (e.g. pH, salinity) on track to stabilise within natural range.	Substrate stabilised within natural range and supporting growth of characteristic biota.	Substrate maintaining conditions suitable for ongoing growth and recruitment of characteristic biota.	Substrate exhibiting physical and chemical characteristics highly similar to that of the reference ecosystem with evidence they can indefinitely sustain species and processes
Species composition	Colonising indigenous species (e.g. ~2% of the species of reference ecosystem). No threat to regeneration niches or future successions.	Genetic diversity of stock arranged and a small subset of characteristic indigenous species establishing (e.g. ~10% of reference). Low threat from exotic invasive or undesirable species.	A subset of key indigenous species (e.g.~25% of reference) establishing over substantial proportions of the site, with nil to low threat from undesirable species.	Substantial diversity of characteristic biota (e.g. ~60% of reference) present on the site and representing a wide diversity of species groups. No inhibition by undesirable species.	High diversity of characteristic species (e.g. >80% of reference) across the site, with high similarity to the reference ecosystem; improved potential for colonisation of more species over time.
Community structure	One or fewer strata present and no spatial pattering or trophic complexity relative to reference ecosystemOne or fewer strata present and no spatial pattering or trophic complexity relative to reference ecosystem.	More strata present but low spatial pattering and trophic complexity, relative to reference ecosystem.	Most strata present and some spatial pattering and trophic complexity relative to reference ecosystem.	All strata present. Spatial pattering evident and substantial trophic complexity developing, relative to the reference ecosystem.	All strata present and spatial pattering and trophic complexity high. Further complexity and spatial pattering able to self-organise to highly resemble reference ecosystem.
Ecosystem function	Substrates and hydrology are at a foundational stage only, capable of future development of functions similar to the reference.	Substrates and hydrology show increased potential for a wider range of functions including nutrient cycling, and provision of habitats/resources for other species.	Evidence of functions commencing - e.g. nutrient cycling, water filtration and provision of habitat resources for a range of species.	Substantial evidence of key functions and processes commencing including reproduction, dispersal and recruitment of a species.	Considerable evidence of functions and processes on a secure trajectory towards reference and evidence of ecosystem resilience likely after reinstatement of appropriate disturbance regimes.
External exchanges	Potential for exchanges (e.g. of species, genes, water, fire) with surrounding landscape or aquatic environment identified.	Connectivity for enhanced positive (and minimised negative) exchanges arranged through cooperation with stakeholders and configuration of site.	Connectivity increasing and exchanges between site and external environment starting to be evident (e.g. more species, flows etc).	High level of connectivity with other natural areas established, observing control of pest species and undesirable disturbances.	Evidence that potential for external exchanges is highly similar to reference and long term integrated management arrangements with broader landscape in place and operative.

Blank slate

Where did I leave my yellow tape measure?

F#@^%^RKK !!!

Full recovery is the goalFull recovery is the goalFull recovery is the goal...

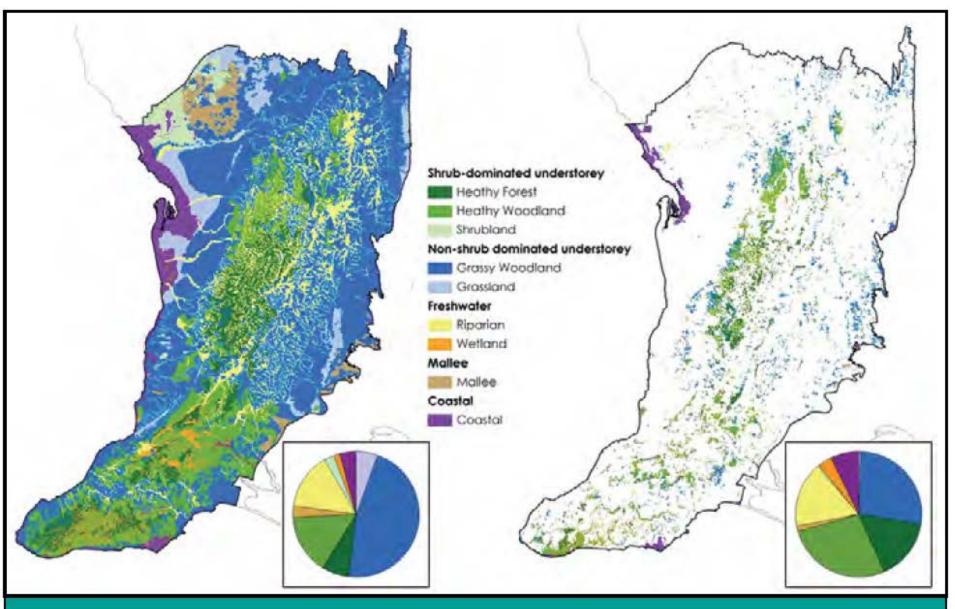
SERA's Key Principles of Ecological Restoration Practice

- 1. Ecological restoration practice is based on an appropriate local indigenous reference ecosystem
- 2. Restoration inputs will be dictated by level of resilience and degradation
- 3. Recovery of ecosystem attributes is facilitated by identifying clear targets, goals and objectives
- 4. Full recovery is the goal of ecological restoration but outcomes may take long timeframes
- 5. Restoration science and practice are synergistic
- 6. Social aspects are critical to successful ecological restoration

25/10/2016

Reference sites

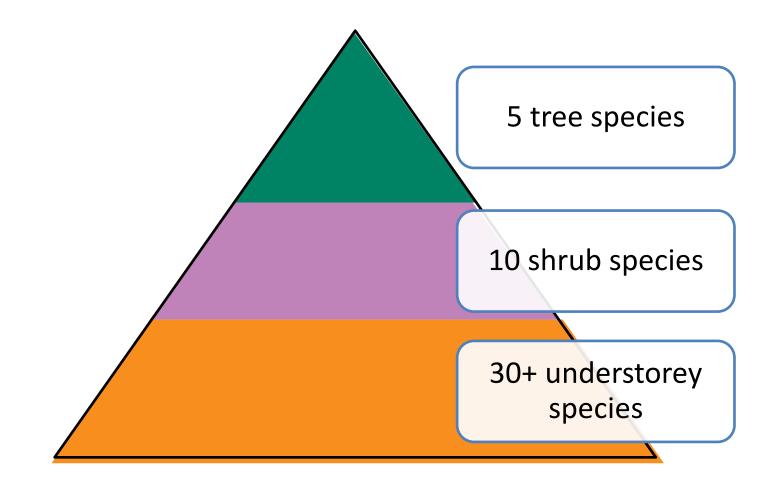
- Species composition
- Structure
- Function and dynamics


Reference sites – but where do I find one?

Mt Bold Reservoir Reserve ~ 5000 ha remnant

DEH (2009) Informing Biodiversity Conservation for the Adelaide and Mount Lofty Ranges Region, South Australia. Priorities, Strategies and Targets.

(a) Pre-European vegetation


(b) Remnant vegetation

Species composition of reference Grassy Woodland

Species composition of reference Grassy Woodland

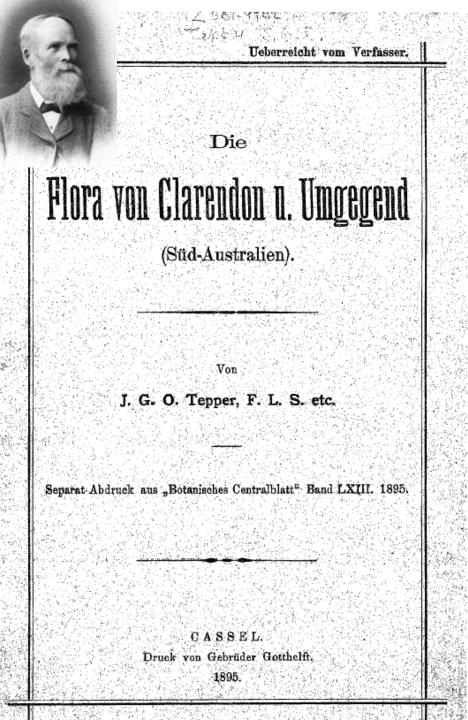
- Identify functional components
- Focus on what is achievable in your site

SERA:

"returning functions also facilitates restoration ...

...That is, recovery is achieved by the processes of growth, reproduction and recruitment of **the organisms themselves over time**, facilitated by the return of appropriate cycles, flows, productivity levels and specific habitat structures or niches."

Reference site vs Restoration site


Understorey relics

1847 George French Angas

2_{5/10/2010}

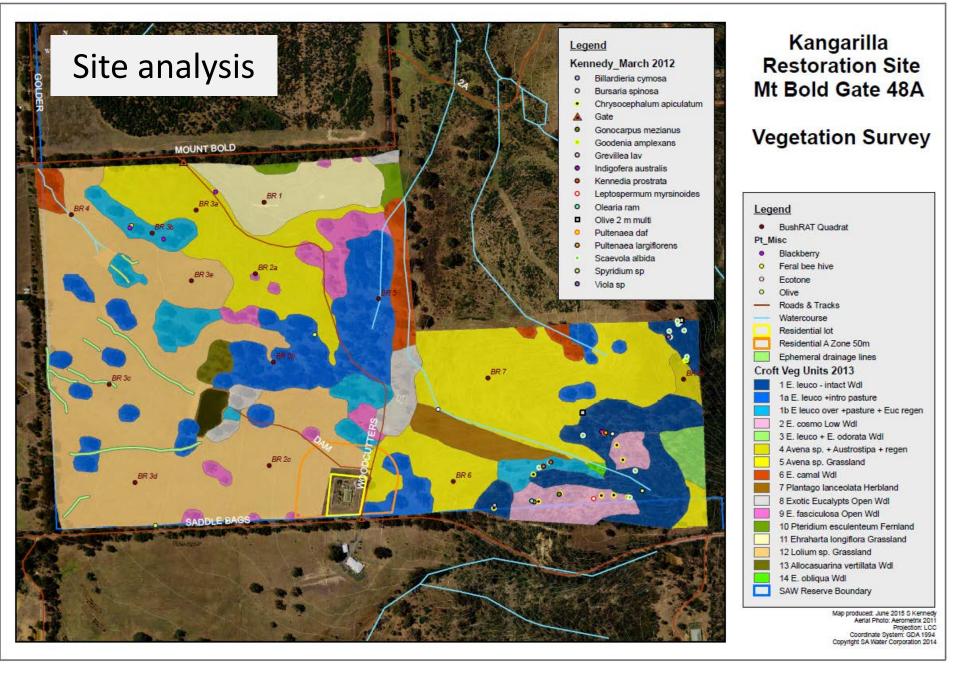
schrieben. Es ist die einzige Pflanze des südlichen Theiles dieser Provinz, welche (ausser der weitverbreiteten Amaryllidee Calostemma purpureum) ihre Blüten vor den Blättern entwickelt und dieses ausserdem vor dem ersten schweren Regen thut, während die andern nach den Sommerschauern erscheinen.

Correa decumbens Andrews wuchs häufig entlang den Flussufern, besonders den nördlichen und westlichen, also den schattigeren Ufern und zwar von wenigen Fussen über dem Sommerniveau bis wenig jenseits des Bercichs der Winterfluthen. Die einzige andere mir bekannte Gegend, wo sich diese Species findet, ist der obere Lauf des Cygnet-Flusses in Kangaroo Island, wo ich sie 1886 auffand.

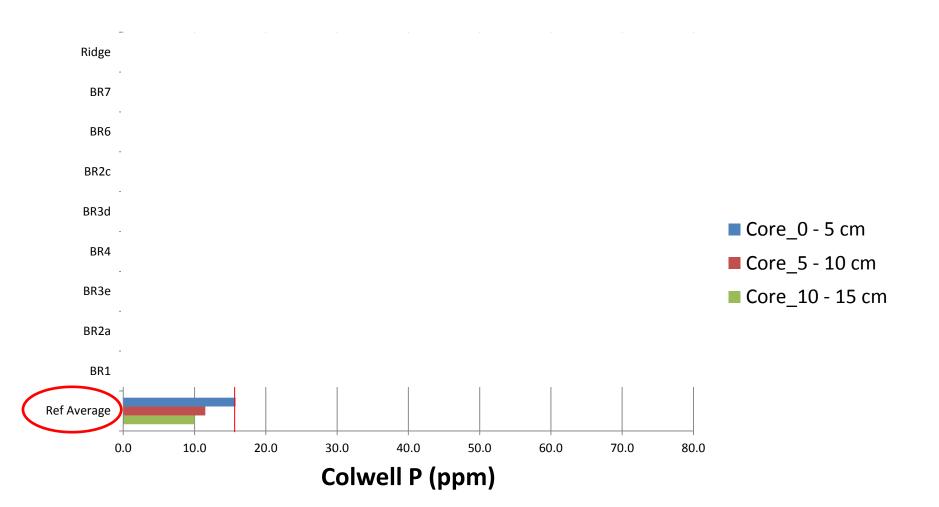
Euphorbia eremophila Cunn. Von dieser Art fanden sich nur wenige Individuen an einem felsigen Hügelabhange am "Field's River" zwischen ein bis zwei Meilen von der Seeküste und gehört dieselbe kaum zu der Clarendon-Flora; ihre eigentliche Heimath ist viel weiter nördlich und dieses vielleicht der südlichste bekannte Standort.

Melaleuca decussata R. Brown. Diese ausgezeichnete Species erreicht hier an den Ufern des Onkaparinga wahrscheinlich ihren nördlichsten Standort und bildete einige schöne Dickichte, welche leider durch die Klärungswuth der Ansiedler mit anderen seltenen, lokalen Pflanzen mehr oder weniger vollständig vernichtet sind. Die rosig purpurfarbenen Blüten und dichte, feine Belaubung geben den Sträuchern ein recht ornamentales Ansehen. Diese Art kommt sonst nur im Südosten und spärlich auf der Kangaroo-Insel vor.

Banksia ornata F. v. Mueller. Obige Bemerkungen finden auch auf diese Pflanze Anwendung. Sie bildet strauchartige Bäumchen, 7—10 Fuss hoch, und kam nur auf dem sandigen Areal zwischen Clarendon und Kangarilla (und nirgends anderswo nördlich davon) vor, während ihre eigentliche Heimath der Südosten und Kangaroo Island ist. Die grossen, zapfenartigen Früchte schliessen die Samen viele Jahre lang ein und öffnen sich sämmtlich nach einem Waldfeuer. Wenn die Art nicht bereits inzwischen vernichtet ist, so steht doch die Vernichtung der kleinen Kolonie recht bald bevor.


Callitris rhomboidea Endlicher. Nur zwei kleine Gruppen und einige einzelnstehende Bäume wurden mir 1882 bekannt, welche sämmtlich im Flussbette und wenig entfernt vom Wasser sich fanden, mit ihren Wurzeln in Felsspalten eindringend (Talkschiefer). Bei meinem letzten Besuche fand sich, dass alle mir erreichbaren Exemplare bereits der Axt des Holzkärrners zum Opfer gefallen waren, um als Feuerungsmaterial seine Kasse um einige Schillinge zu bereichern! Anderswo bin ich dieser Art noch nicht begegnet.

Thelymitra ixioides R. Brown. Diese hübsche södaustralische Orchidee — leicht an ihren dunkel gesprenkelten Blumen kenntlich — erreicht hier ihre nördlichste Grenze und fand sich nur an steinigen Bergabhängen oberhalb 1500 Fuss Höhe. Die einzige


SERA's Key Principles of Ecological Restoration Practice

- 1. Ecological restoration practice is based on an appropriate local indigenous reference ecosystem
- 2. Restoration inputs will be dictated by level of resilience and degradation
- 3. Recovery of ecosystem attributes is facilitated by identifying clear targets, goals and objectives
- 4. Full recovery is the goal of ecological restoration but outcomes may take long timeframes
- 5. Restoration science and practice are synergistic
- 6. Social aspects are critical to successful ecological restoration

25/10/2016

Nutrient analysis - Kangarilla

Weed soil seed bank

- 14 sample locations stratified across the site based on mgt units
- Sept 2015
- soil cores taken at 3 depths (0 − 5 / 5 − 10 / 10 − 15 cm)
- Core samples analysed in the lab for seedling emergence at 10 weeks

SA Seed Conservation Centre

Weed soil seed bank

Findings:

- Majority of seedlings (78%) emerged from the top 5 cm of soil
- 19% of seedlings emerging from the 5-10 cm samples
- Only 3% in the 10-15cm layer

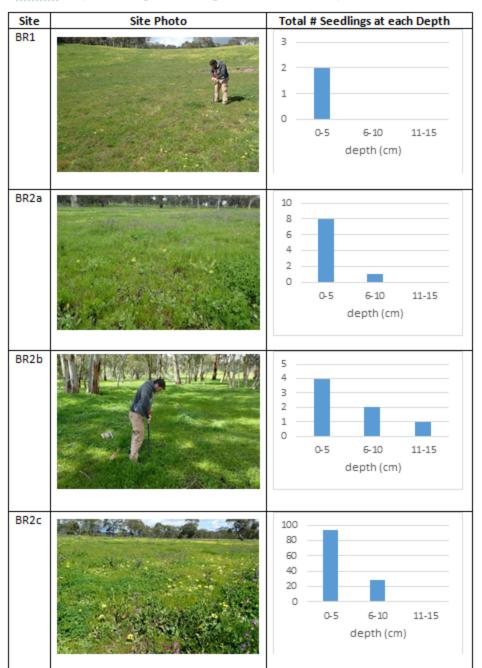
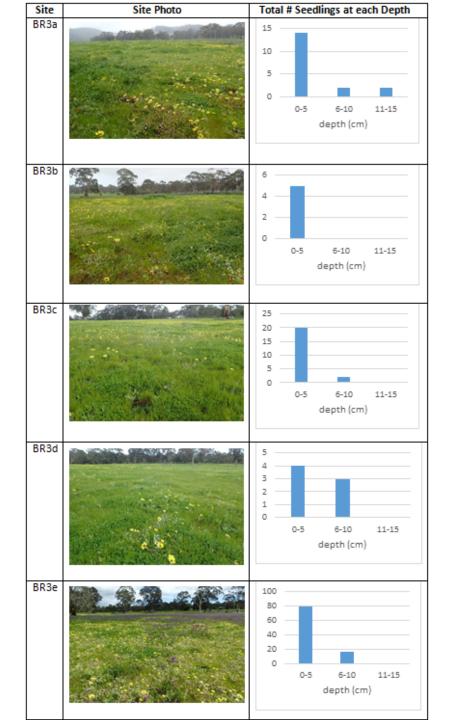
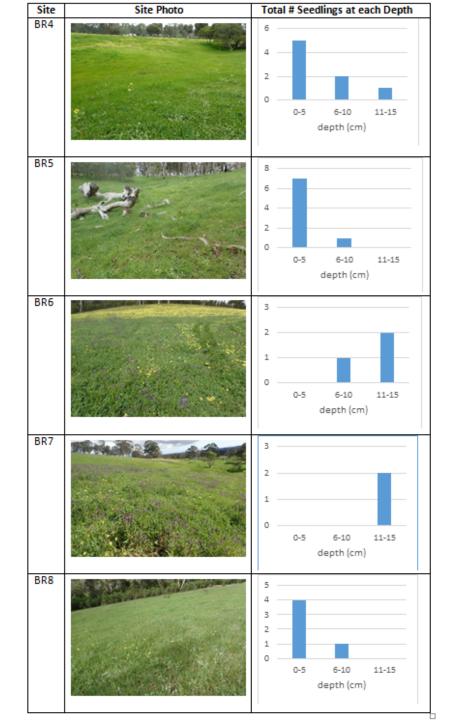
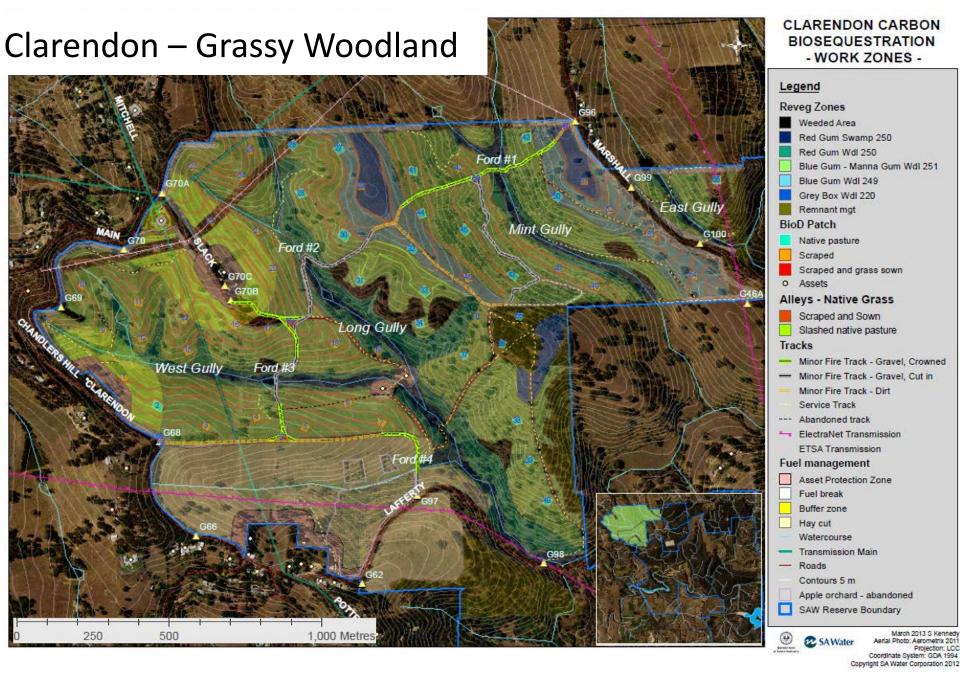




Table 5. Graphs showing the seedling number from each depth for each BR Bush Rat site number.

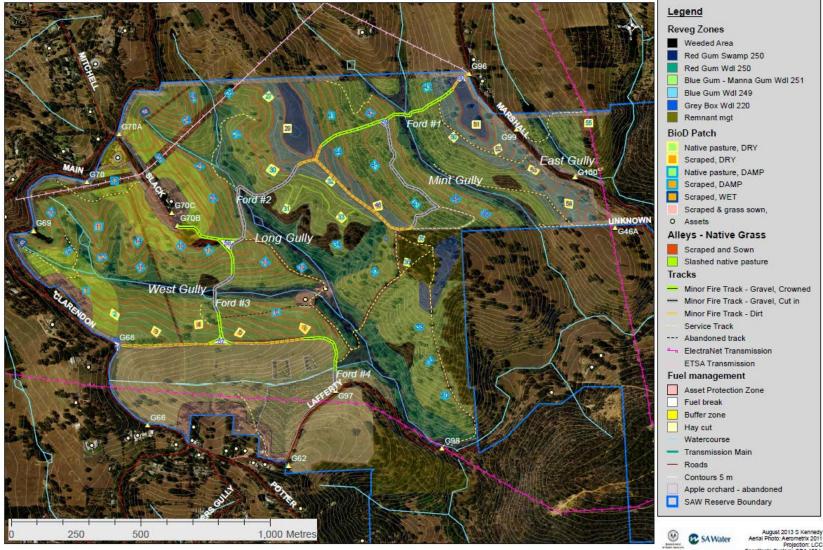

25/10/2016

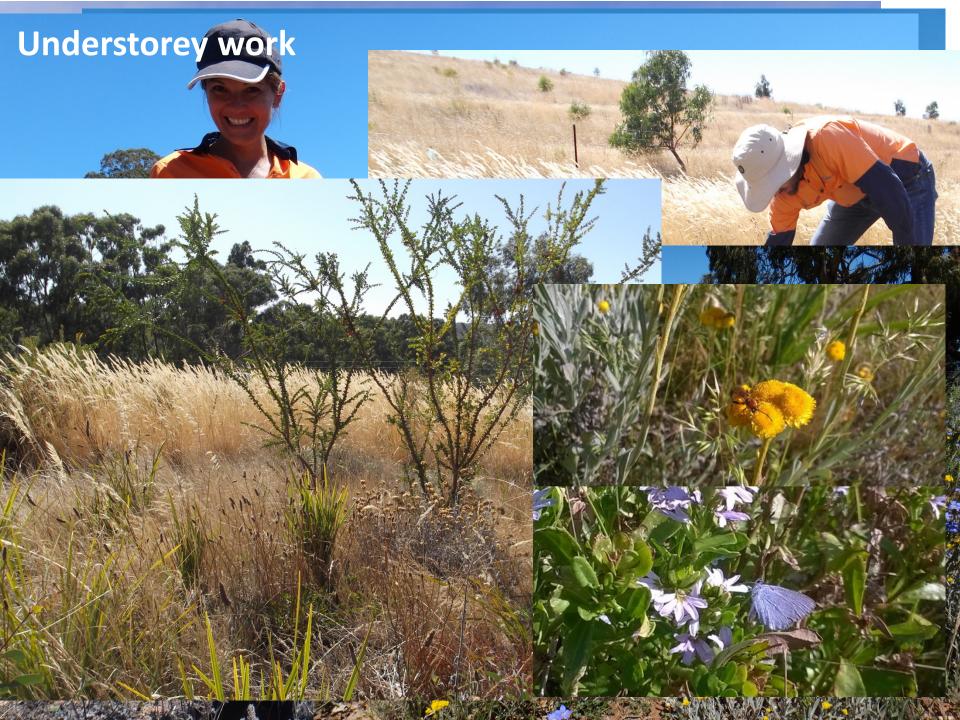
25/10/2016

Outline

- Case study snap shots
- A word on Planning restoration work
- Project design considerations
 - Nutrients
 - Weed seed bank
 - Species diversity
- Application to project case studies outcomes

Clarendon – Native Grass Alleys


Clarendon – establishment counts


Clarendon Nov 2015 – John Stafford harvest

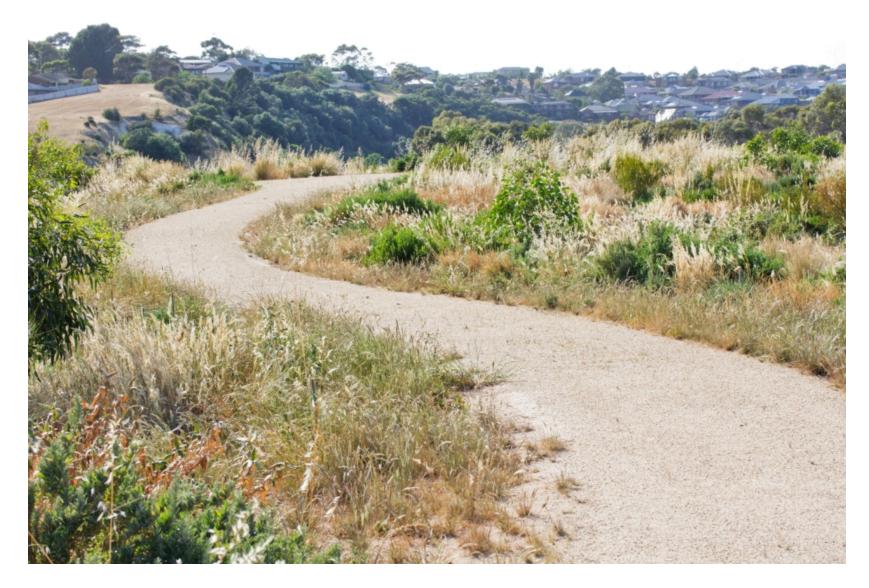
Clarendon

Projection: LCC Coordinate System: GDA 1994 Copyright SA Water Corporation 2012

Biodiversity patches – forb seeding

Noarlunga Downs Wetland

Noarlunga Downs Wetland – Mallee-box Wdl


Noarlunga Downs Wetland – erosion control

Noarlunga Downs Wetland – Interp trail

Noarlunga Downs Wetland – interp trail

Noarlunga Downs Wetland – interp trail

Murray Bridge East – Abandoned waste water lagoon (350 mm rainfall)

Murray Bridge East

August 2015 – plant mounds

Murray Bridge East

January 2016

Murray Bridge East

Tubestock vs Seeding

Grassland Zone 2.5 ha

• Sow rate 29 kg/ha (floret)

D. cespitosa, D. setacea, Stipa nodosa, S scabra Ennaepogon, Chloris tuncata
 Density result = average 66 pl/m²
 Across 2.5 ha = 1,650,000 ng seedlings

- Chenopod sow rate 17.5 kg/ha
 Density result = 1 pl/m2 or 10,000 /ha
- So we're talking 250,000 chenopods

Total = 1.85 million plants

- Seed \$12k
- Labour \$20k
- \$32 k 3ha = \$10.6 k/ha
- Works out around \$0.01 / plant

Murray Bridge East (350 mm rainfall) June 2016

Hahndorf SPS – post construction reinstatement Oct 2012

Hahndorf SPS – post construction reinstatement Feb 2014

Hahndorf SPS – post construction reinstatement June 2014

Ecosystem re-assembly - KI

Acknowledgements

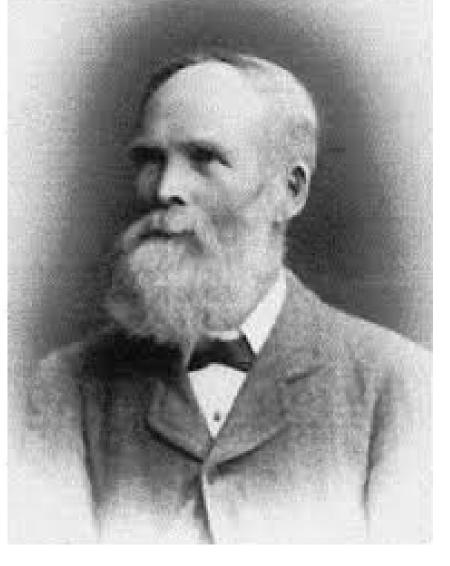
Andrew West	Adelaide & Mt Lofty Ranges NRM
Phil Druce	Blackwood Seeds
Jeff Whittaker	Habitats SA Revegetation Services
Tim Swiersen	Ecotypic
Jack James &	
Grantley Couzner	Fleurieu Fencing & Revegetation
Jon Weise	
Andrew Byrne & Co.	Wrenhaven Contracting
Glenn Christie	Succession Ecology
Paul Alisauskas	Sporting Shooters SA
Jamie Horne	LCS Landcapes
Paul Nichols	
Robert Myers	Himself
Luke Kingston	
Flora Holton	Greening Australia
Dr. Paul Gibson-Roy	
Louise Farrell	Indigeflora Nursery
Phil Collins	State Flora Nursery

Conserve 30% native vegetation for sustainable agriculture!

TREES AND THEIR ROLE IN NATURE:

J. G. O. TEPPER, F.L.S., &c.

BY


SYDNEY: CHARLES POTTER, GOVERNMENT PRINTER, PHILLIP STREET.

1896

110 108-96-0

25/10/2016

1896

