Importance of Grasslands and the role they play

(... understanding the future of grassland restoration)

- by Joan Gibbs

Adelaide Plains Grassy Woodland Restoration Forum March 14 - 16, 2012 Mawson Lakes, South Australia

Acknowledgments

- Kaurna people of the Adelaide plains, who burned their grasslands for land health and game
- Salisbury Council, Brian Pledger & organisers
- Distinguished grassland visitors to SA
- Rural Solutions Native Grass Strategy for South
 Australia, 1 & 2
- Native Grass Resources Group (NGRG) and Tungkillo Landcare, supporters of our research
- 30 years of students at UniSA, with careers in grasses & seeds
- agrostophiles!

Dedication – renowned agrostologist

- Agnes Chase (1869 -1963)
- Smithsonian Institution
- Explained grass structures, simply, for ID
- Made taxonomy accessible to everyone

"Grass made it possible for the human race to abandon his cave life and follow herds.... Grasses have been so successful in the struggle for existence that they have a wider geographic range than any other plant family, and they occupy all parts of the earth." Chase, M. Agnes (1922) *A First Book of Grasses: The Structure of Grasses Explained for Beginners*. (Smithsonian Institution)

Grasses: Poaceae/Gramineae and...

- 11,000 species; structure of leaf, fibrous roots, florets:
- Major crop plants: rice, wheat, maize, barley
- Stock fodder & materials (bamboo)
- Two major clades: BEP and PACMAD
- Of C₄ species, 60% are grasses, ...convergent evolution!
- Graminoids (other monocots) & the grassland community

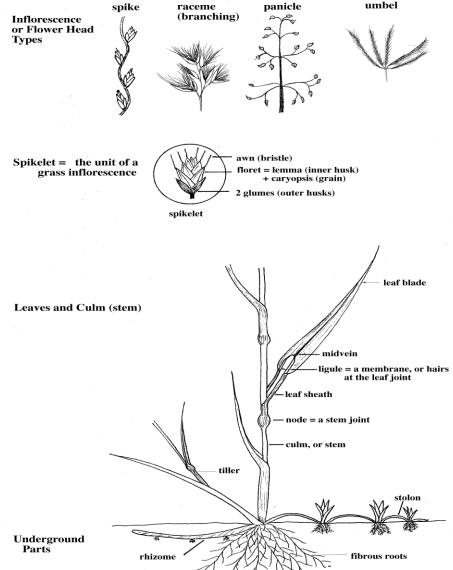
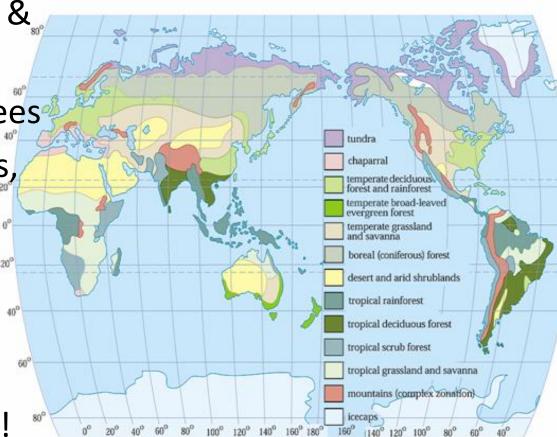
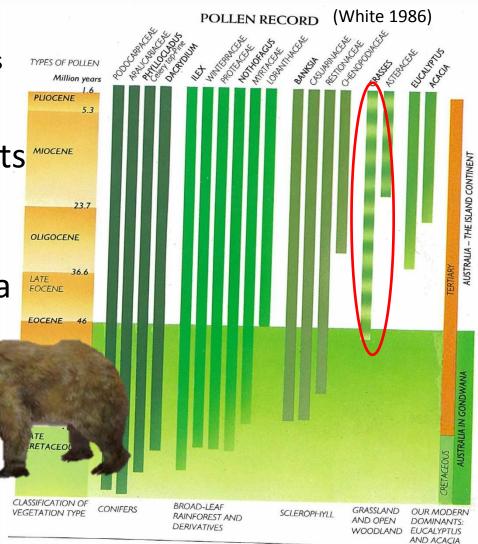



Figure 2. Structure of a grass plant (adapted from Brown, 1986).

Definition of grasslands

- non-woody grasslands & grassland mosaics
- savannas, scattered trees
- woodlands, shrublands,
- tundra
- Cover 40% of Earth
- 4 major biomes, 35 ecosystem types
- Grasslands DOMINATE!


Origins of grasses and grasslands

Eras of time	Periods of time	Epochs of time (Cenozoic era only)	Age (millions of years)	Major biological events Domination of grasslands & grazers
Cenozoic	Quaternary	Recent (Holocene) Pleistocene	1.0	Humans expand in range Major ice ages and extinction of large animals in Northern Hemisphere
	Neogene	Pliocene Miocene	1.6 23	C4 grasses develop in dry habitats, 15x Extensive radiation of flowering plants and mammals Dominance of gastropods C3 grasses develop in wet habitats
	(Tertiary)	Oligocene Eocene	23	
	Paleogene	Paleocene	65	
Mesozoic	Cretaceous			S ancestor in Gondwana – S.America or Africa First flowering plants Extinction of ammonites, marine and aerial reptiles
	Jurassic		208	Cycads, conifers, ginkgoes, dinosaurs dominant First birds, flying reptiles, marine reptiles
	Triassic		208	First dinosaurs and mammals Dominance of mammal-like reptiles Dominance of ammonites

- Review articles:
 - C. Stromberg 2011. Evolution of grasses and grassland ecosystems
 - E. Edwards et al. 2010. The origins of C_4 grasslands: ... Ecosystem

Origin of grasses in Australia

- First fossil pollen 47 mya
- Phytoliths (silica) new fossils
- Isolation from Gondwana
- Grasslands replaced forests 40 mya, after G breakup
- Extensive C₄ grasslands
 12 mya fossil megafauna at Riversleigh, Qld.
- Domination of C₄ grasslands 5 mya -Pliocene

Fluctuating temperatures & rainfall in Pleistocene form *present-day vegetation:* <u>humans favour grass</u>

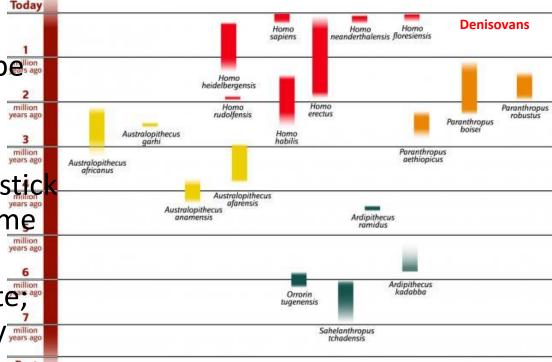
Late Pliocene

Early Pleistocene


Age (millions of years ago)

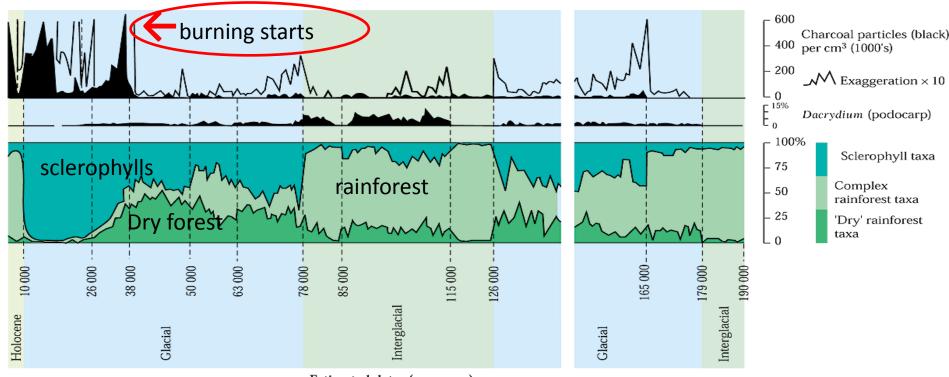
late

Pleistocene


Mid Pleistocene

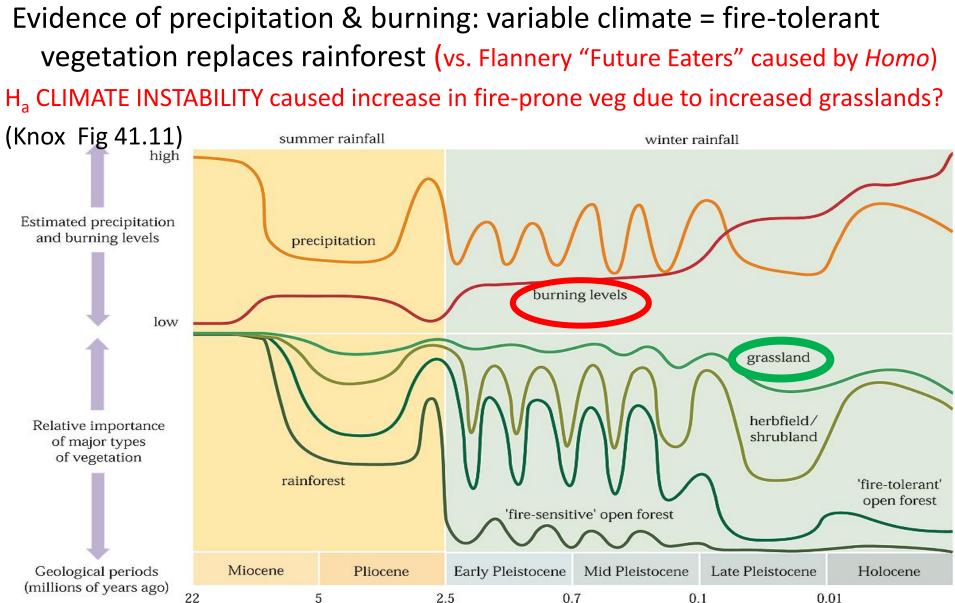
- From 1.6 mya
- Trends of <u>drying, fire, instability,</u> <u>fluctuations</u>
- 4 Glacial periods, aridity 100k
 Compositae (daisies)
- Interglacial, warm rain, 10ky = Casuarinaceae, sheoak forests

Humans evolved as grasslands dominated


- Climate changed forest to grasslands 6 mya, upright ap
- 2 mya first hominids cook vegies; hunted for meat
- .5 mya Neanderthal use firestic farming in grasslands for game (new, Paolo 2010)
- 200,000 ya unstable climate;
 extinctions of contemporary
 Homo cousins; rapid drying
 climate favours *H. sapiens* in grasslands (R. Potts 2011)
- 70,000 ya 1st migration to Oz?
- 35,000 ya *H. sapiens* displaces Neanderthal in Europe, burning stops (Chauvey Cave, Fr)

(Smithsonian Institution)

See TV: "Becoming Human" SBS – Episode 3, *Creatures of Climate Change*, <u>www.sbs.com.au</u> Potts, R. 2007. Paleoclimate and human evolution. *Evol. Anthro.* 16:1-3. Rasmussen *et al.* 2011. Aboriginal genome. *Science*.


The last 200,000 years: charcoal & pollen in lake cores show vegetation changes with fire/climate

- Evidence of humans burning? Contentious! (Fig 41.10 Knox)
- Proof that vegetation changed with increased burning or with climate change, glacial periods, rainforests decline.
- Extinction of megafauna 35-12,000 ya???

(Read: Tim Flannery Future Eaters, Jared Diamond Collapse)

Summary: Evolution of ecosystems with climate change and fire (in SE Australia)

Cereal crops and origin of money

- 11,000 ya cultivated wild rye (Syria): agriculture, farms
- 9000 ya <u>domesticated</u> wheat (Tigris/Euphrates R)
- 7000 ya maize (Mexico)
- 4000 ya <u>intensive production</u> first city-states (Sumerians) cereal currency
- 1300 BC first Cu coins (Egypt)
- 500 BC Roman silver coins had image of Juno Moneta "money"

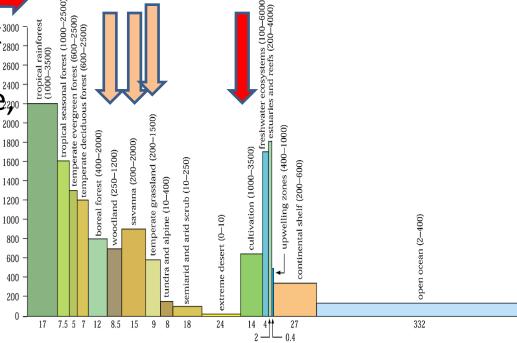
Timeline of early farming

9000 BC	Wheat/barley, Fertile Crescent
8000 BC	Potatoes, South America
7500 BC	Goats/sheep, Middle East
7000 BC	Rye, Europe
6000 BC	Chickens, South Asia
3500 BC	Horse, West Asia
3000 BC	Cotton, South America
2700 BC	Corn, North America

(World Resources Institute 2010)

Importance of grasslands

"Grass is what holds the earth together..."


Agnes Chase

Importance of grasslands (NGRG, Inc)

Net primary

- Food crops, 700 g/m²/yr
- Goods & Services: livestock
 production, grassland
 biodiversity, carbon storage
 water infiltration, soil
 stability, weed/fire
 management
- C₄ savannas = 20% of C fixation (Osborne 2008)
- Conservation of habitat for grassland species
- Tourism and recreation/ parks & gardens
- Basis of world economies

Area (millions of km²) of earth's surface occupied by each ecosystem type

The dominance of grasslands

(World Resources Institute 2006)

- Cover 40% of the Earth
- 35 terrestrial ecosystem types, of 136 total
- Australia is in the top five largest grasslands

 Hummock grasslands (*Triodia*)
 Tussock grasslands (*Astrebla, Austrodanthonia*)
- Human populations highest in dry grasslands (Asia & Africa) – poverty, desertification
- Conversion to crops greatest in temperate region
- Greatest grass productivity in tropical savannas

Grassland associations

Example in SA: Lachnagrostis limita nea

- Complex communities
 Pygmy blue-tongue
 - Grasses & graminoids
 - Non-grass associates, daisies
 - Grazers, predators, webs
 - Soil microbes
- Strong interconnections
- The most threatened species are found in grasslands
- <1% of original grasslands
 Blue devils remain; once 48% of the Adelaide region

Plains wanderer

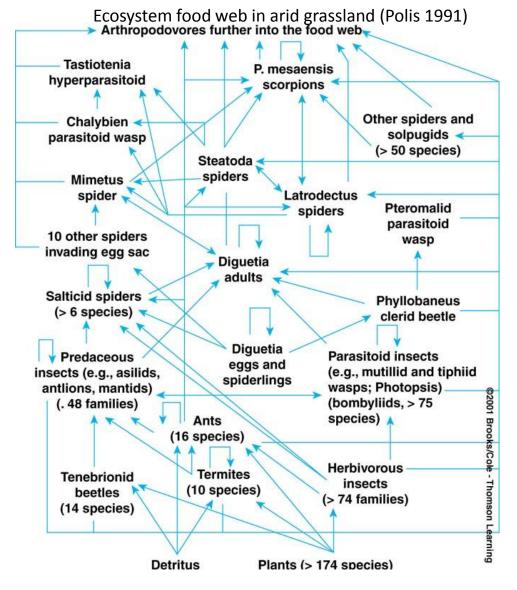
Understanding grassland ecosystems

321		R		
			1. A	
				A C
nttp://s	o <mark>ils usd</mark>	a.gov/s	<u>qi/con</u>	cep

Unseen, controlling life on Earth (90%) (Stamets 2010)

Five major functional groups:

- Bacteria
 - P Fungi
- Nematodes
- Protozoa
- ots/soAuthropods



Ecosystem function in grasslands

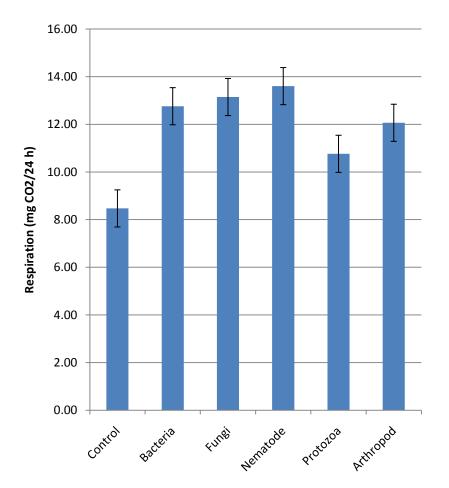
<u>COMPLEXITY = STABILITY</u>

- Decomposition
- Nutrient turnover
- Energy transfer
- Relationships
 - Grazers, predators, decomposers
 - Protector fungi, bacteria
 - Symbiotic fungi

<u>CONNECTANCE</u> is greatest in grassland ecosystems; = STABILITY, survive change

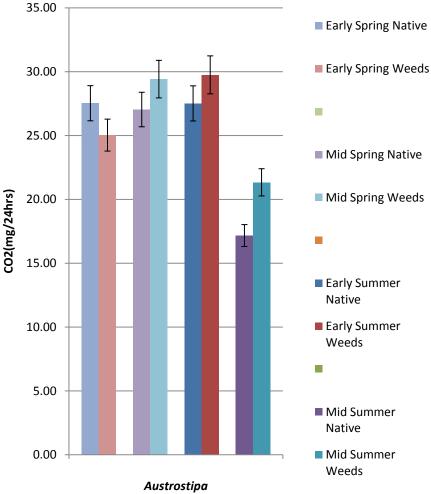
Research questions – UniSA, Tungkillo Landcare

Q1 – Which soil biotic groups are more active?


Q2 – Are weed sites more active than native grass sites?

Q3 – Are C4 grass sites more resilient in drought than C3 grass sites?

Microcosm with alkali trap to measure CO_2 ; specific biocides show activity of each biotic group


Q1 – Which soil biotic groups are more active?

- Fungi and bacteria important decomposers
- Nematodes graze on grass roots, plant material

Respiration in *Austrostipa* community (C_3 , cool-season) in optimum season (mid-spring)

Q2 – Are weed sites more active than native grass sites?

- Weed sites fluctuate more
 than native grass sites(C₃)
 - Cool-season grass sites are more active than weed sites in spring but less active in summer (drought/heat stress

<u>Q3 – Drought resistance: $C_3 C_4$ </u>

 Warm-season grass sites (C₄) remained active in summer – Microbes tolerate drought in Themeda grasslands.

Conclusions – Tungkillo grassland research

- Applications of research:
 - Seasonal fluctuation of soil organism activity, describes native grass and weedy ecosystems.
 - Dry sites support *Themeda* (C_4) grasslands; moister sites support C_3 grasslands like *Austrostipa*.

– Future research:

- Soil organism taxonomy
- Effects of moisture & temperature on respiration measurement
- Use more sophisticated techniques for CO₂ such as PLFA (for biota) or infra-red gas analyser
- Test more species of grasses, other weed sites

Grasses, Fire and Fungus (NGRG project)

- Austrodanthonia fulva growth was significantly greater with biochar (from *Chloris*)
- Austrodanthonia fulva growth was significantly greater with protective fungus (Gliocladium)
- The combined effect of both fungus and biochar was <u>equal to the effect of either alone</u>, but no greater
 - Research project by Liam Crook, UniSA. 2011

New research questions

- Introduced species: which are harmful, benign or beneficial to native grasses?
- Does cool burning promote grass growth and beneficial soil organisms?
- Does kangaroo grazing stimulate native grass growth?

• What else?....

Conclusions: What are

sustainable grassland systems?

- Dominance by grasslands and humans has been the most dramatic and rapid change in Earth's history.
- Evidence: pollen record shows grasses dominated in. Pleistocene with humans, grazers, drought & fire.
- Study evolved cultures:
 - Mongolian steppe culture
 - Value of herbivores
 - Grazing systems
 - Lifestyle vs. money

- ns?
- Grass & fire connection
 - Many endangered species = lack of fire regime?
 - Firestick farming (400,000 y)
 - Low-temperature burning for biochar & fungi

Prioritise grassland species/ecosystems with fire regime dependence!

Grassland restoration ideas

- Data & research needed!
- IUCN has 250 Centres of Plant Diversity CPD (50% have grasslands)
- Field-based research groups, ILTER network
- Biodiversity Reserves (CSIRO)
- Register of restoration plots, like Salisbury Council's grassland production sites
- Community research groups (non-institutional)
- Biodiversity enterprise and food from Nature w. people
- Food security with biodiversity?

READINGS:

- "Habitat Restoration Planning Guide for NRM" 2010. <u>www.environment.sa.gov.au</u>
- "The SER International Primer on Ecological Restoration" 2004. <u>www.ser.org</u>
- "A Sustainable Planet through Solutions for its People" 2010. <u>www.wri.org</u>
- Henson PM 2003. What holds the Earth together. J. History of Biology 36:437-460.
- Glover JD, Cox CM, and Reganold JP 2007. Future Farming: A Return to Roots? Scientific American 297: 66–73.

Discussion?

- First conference on Ecological Restoration – Perth, 27 November 2012
- Submissions open now!
- Contact: <u>Jason.Stevens@bgpa.wa.</u> <u>gov.au</u>

- SOCIETY FOR ECOLOGICAL RESTORATION AUSTRALASIA
- INAUGURAL
 CONFERENCE ON
 ECOLOGICAL
 RESTORATION